skip to main content


Search for: All records

Creators/Authors contains: "Nhu, Nguyen T. Q."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. Alterations to the rod shape, such as the curved rod, occur through manipulating the process of cell wall synthesis. The human pathogenVibrio choleraetypically exists as a curved rod, but straight rods have been observed under certain conditions. While this appears to be a regulated process, the regulatory pathways controlling cell shape transitions inV. choleraeand the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape inV. choleraeis regulated by the bacterial second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) by posttranscriptionally repressing expression ofcrvA, a gene encoding an intermediate filament-like protein necessary for curvature formation inV. cholerae.This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated withV. cholerae’s induction of sessility. During microcolony formation, wild-typeV. choleraecells tended to exist as straight rods, while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straightV. choleraemutants have reduced swimming speed when using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic and biofilm lifestyles.

     
    more » « less